

P126TI- II G-DRIVE

© POWER RATING

Engine Speed	Type of	Engine Power	
rev/min	Operation	kWm	Ps
	Continuous Power	*	*
1800	Prime Power	307	418
	Standby Power	342	465
	Continuous Power	*	*
1500	Prime Power	265	360
	Standby Power	294	400

Note: -. The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271.

- -. Ratings are based on ISO 8528.
 - → **Prime power** available at variable load. The permissible average power out put (during 24h period) shell not exceed 70% of the prime power rating.
 - \rightarrow **Standby power** available in the event of a main power network failure. No overload is permitted.

	ME	$^{\gamma}$ LI $^{\lambda}$	NIC	A T	CVC	TEM
U	IVIE	\sim Π A	MNICA	\mathbf{AL}	010	L CALVI

© FUEL CONSUMPTION

○ Engine Model	P126TI- Ⅱ	• Prime Power (lit/hr)	1,500 rpm	1,800 rpm
○ Engine Type	In-line 4 cycle, water cooled	25%	16.9	20.6
	Turbo charged & intercooled (air to air)	50%	31.3	37
 Combustion type 	Direct injection	75%	47	56
Cylinder Type	Replaceable dry liner	100%	63.1	73.8
 Number of cylinders 	6	○ Standby Power (lit/h	1,500 rpm	1,800 rpm
○ Bore x stroke	123(4.84) x 155(6.1) mm(in.)	25%	18.3	22.2
O Displacement	11.051(674.5) lit.(in ³)	50%	34.9	41.4
 Compression ratio 	17:1	75%	51.6	61.5
○ Firing order	1-5-3-6-2-4	100%	77.6	89.5
 Injection timing 	16° BTDC			
 Compression pressure 	Above 28 kg/cm2(398 psi) at 200rpm	© FUEL SYSTEM		
Ory weight	Approx. 910 kg (2,006 lb)	○ Injection pump	Zexel in-line "P	" type
Dimension	1,383 x 870 x 1,207 mm	○ Governor	Electric type	
(LxWxH)	(54.4 x 34.3 x 47.5 in.)	○ Feed pump	Mechanical type	e
○ Rotation	Counter clockwise viewed from Flywheel	○ Injection nozzle	Multi hole type	
○ Fly wheel housing	SAE NO.1	Opening pressure	220 kg/cm ² (3,1	29 psi)
○ Fly wheel	Clutch NO.14	○ Fuel filter	Full flow, cartrid	dge type
		O Used fuel	Diesel fuel oil	

© MECHANISM

© LUBRICATION SYSTEM

○ Type	Over head valve		○ Lub. Method	Fully forced pressure feed type
O Number of valve	Intake 1, exhaust 1	per cylinder	○ Oil pump	Gear type driven by crankshaft
O Valve lashes at cold	Intake 0.30mm (0.	0118 in.)	○ Oil filter	Full flow, cartridge type
	Exhaust 0.30mm (0	.0118 in.)	Oil pan capacity	High level 23 liters (6.1 gal.)
				Low level 20 liters (5.3 gal.)
© VALVE TIMING			○ Angularity limit	Front down 25 deg.
	Opening	Close		Front up 25 deg.
○ Intake valve	18 deg. BTDC	34 deg. ABDC		Side to side 15 deg.
○ Exhaust valve	46 deg. BBDC	14 deg. ATDC	○ Lub. Oil	Refer to Operation Manual

P126TI-II G-DRIVE

© COOLING SYSTEM

○ Cooling method
 ○ Water capacity
 Fresh water forced circulation
 19 liters (5.02 gal.)

(engine only)

○ Pressure system Max. 0.9 kg/cm² (12.8 psi)
 ○ Water pump Centrifugal type driven by gear

○ Water pump Capacity 320 liters (84.5 gal.)/min

at 1,800 rpm (engine)

○ Thermostat Wax – pellet type

Opening temp. 71°C Full open temp. 85°C

○ Cooling fan Blower type, plastic

755 mm diameter, 7 blade

© ELECTRICAL SYSTEM

○ Charging generator○ Voltage regulator24V x 45A alternatorBuilt-in type IC regulator

○ Starting motor 24V x 6.0kW

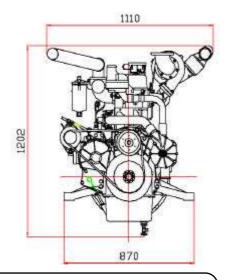
○ Battery Voltage 24V

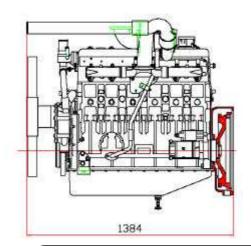
O Battery Capacity 150 AH (recommended)

OStarting aid (Option) Block heater

© ENGINEERING DATA

Water flow	265 liters/min @1,500 rpm
 Heat rejection to coolant 	27.6 kcal/sec @1,500 rpm
○ Heat rejection to CAC	8.4 kcal/sec @1,500 rpm
○ Air flow	20.1 m ³ /min @1,500 rpm
○ Exhaust gas flow	47.4 m ³ /min @1,500 rpm
○ Exhaust gas temp.	590 °C @1,500 rpm
○ Water flow	320 liters/min @1,800 rpm
 Water flow Heat rejection to coolant	320 liters/min @1,800 rpm 32.2 kcal/sec @1,800 rpm
	•
• Heat rejection to coolant	32.2 kcal/sec @1,800 rpm
Heat rejection to coolantHeat rejection to CAC	32.2 kcal/sec @1,800 rpm 14.9 kcal/sec @1,800 rpm


O Max. permissible restrictions


 $\begin{array}{ll} \text{-.Intake system} & 220 \text{ mmH}_2\text{O initial} \\ & 635 \text{ mmH}_2\text{O final} \\ \text{-.Exhaust system} & 600 \text{ mmH}_2\text{O max.} \end{array}$

◆ CONVERSION TABLE

in3 = lit. x 61.02 lb/PS.h = $g/kW.h \times 0.00162$ hp = PS x 0.98635 cfm = $m^3/min \times 35.336$

 $1b = kg \times 2.20462$

TRITON POWER CORP 8511 NW 61 STREET MIAMI, FL USA 305-592-6300 Fax: 305-592-5900 email: info@tritonpower.com website: tritonpower.com

* Speccifications are subject to change without prior notice